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Abstract. In numerous application areas, general undirected graphs
need to be drawn, and force-directed layout appears to be the most fre-
quent choice. We present an extensive experimental study showing that,
if the goal is to represent the distances in a graph well, a combination of
two simple algorithms based on variants of multidimensional scaling is
to be preferred because of their efficiency, reliability, and even simplic-
ity. We also hope that details in the design of our study help advance
experimental methodology in algorithm engineering and graph drawing,
independent of the case at hand.

1 Introduction

Graph drawing is concerned with the geometric representation of graphs. For
general undirected graphs, force-directed and energy-based layout algorithms
are commonly used, because they are often easy to implement and experience
shows that they can result in undistorted and readable layouts which reveal
structural features such as local clustering and symmetry [3].

Based on experimental evidence presented in this paper, we argue that approx-
imate classical scaling with subsequent stress reduction should be used instead.
The requirements leading to this argument are:

1. quality: pairwise distances between vertices are represented well,
2. scalability: the algorithm scales to very large graphs, and
3. simplicity: the algorithm is easy to understand and implement.

Note that the quality criterion is implicit on force-directed algorithms. Classical
scaling and stress minimization are instances of the general concept of Mul-
tidimensional Scaling (MDS, see [II8] for comprehensive references). MDS of
graph-theoretic distances has been used early on for automatic layout of social
networks [16], without explicit reference in the well-known algorithm of Kamada
and Kawai [15], and in the wider context of data analysis (e.g.,[5I0]), but the use
of advanced MDS algorithms well-known in other fields has gained momentum
only after Gansner, Koren, and North applied majorization to stress minimiza-
tion in graph drawing [12]. Stress minimization is generally assumed to be the
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method of choice for drawing general graphs, because of its intuitive and adapt-
able objective function and the visually pleasing layouts obtained. Yet, it is often
found to be difficult to implement efficiently, and the presence of local minima
is a serious concern.

Our study provides an assessment of layout quality and efficiency, and also
yields a recommendation on how to implement the method to achieve reliabil-
ity, efficiency, and simplicity at the same time. While a considerable number
of experimental studies have been conducted to assess graph drawing criteria
and algorithm performance, only two are closely related [2/13]. However, these
compare implementations of suites of related algorithms which are treated as
black boxes. The combination of our in-depth study with these more general
comparisons provides additional support for our conclusion.

A methodological contribution of our study is the design of experiments
along explicit hypotheses about the performance of algorithms. These guided
our choice of experiments and structure argumentation.

The remainder of this paper is organized as follows: In Sect. [, background
on the relevant MDS variants and their application to graph drawing is given.
The main hypotheses are stated in Sect. Bl The experimental setup is described
in Sect. [ and the actual experiments in Sect. Bl Section [ discusses results with
regard to our hypotheses. We conclude with a summary in Sect. [7}

2 Multidimensional Scaling

Let V ={1,...,n} be the set of n objects and let D € R"*™ be a square matrix
of dissimilarities d;; for each pair of objects 7,5 € V. MDS yields a matrix
X = [x1,...,1,]T € R"*? of d-dimensional positions z1, ..., z, € R? such that

||$Z — 33]” ~ di]‘ for all Z,j eV (1)

is met as closely as possible; in our experiments, d = 2 throughout. We leave this
somewhat informal for the moment and make it more precise in the following
two subsections, where we describe the objective functions typically considered
to assess compliance with (). Straightforward implementations of these run in
O(n?) time, but we will discuss more efficient algorithms in Section Al

Classical Scaling. The first approach to achieve () is based on linear algebra
and is referred to as classical or inner-product scaling. Let D € R™*"™ be defined
as above, and let D) be matrix D with all entries squared. Classical scaling is
based on a matrix B € R"*" of pseudo products b;; with

_ 1 2 1 S 2 1 S 2 1 S 2
R IO SLE LR o) @
s=1 r=1 r,s=1

or equivalently, written in matrix form, by double-centering D with B =
—%JnD(Q)Jm where J,, = I,, — }L . (1n1,7:) € R™*™ [, being the identity matrix
and 1,, € R™ the all-ones vector of length n.
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(a) classical (b) g=2

Fig. 1. Example drawings for the 1138bus graph. Drawing (a) is generated with classical
scaling, drawings (b)—(e) with distance scaling and weights w;; = d,.

Let v1...,v, € R"™™ and Ay > --- > A, € R be the sequence of eigenvec-
tors and corresponding eigenvalues of B. Two-dimensional coordinates are then
obtained by setting the configuration matrix X € R"*2 to be

X = [\/Am, \/Am] , (3)

which is optimal [IJthe mismatch between the pseudo inner-products derived
from the d;;’s in ) and the inner products x] z;, namely

strain(X) = |B - XXT | = > (byy —alay)” (4)
(2%
The advantage of this approach is that it gives analytic solutions which are

essentially unique and optimal with respect to strain. A major drawback is the
detour via inner products, sometimes leading to degenerate solutions.

Distance Scaling. Instead of achieving () by fitting inner products b;; and 21 z;,
coordinates can be computed by directly fitting distances ||z; — x;|| to dissimi-
larities d;;. This leads to the objective function

2
stress(X) = Y wy; (dij — ||z — x]])° (5)
i

where w;; > 0 weights the contribution of pair ¢, j; frequently, w;; = dfj for some
q € R. Since there is no known method for directly computing a configuration X
with minimal stress, the standard approach is iterative numerical optimization.

Graph Drawing and MDS. Most applications of MDS to graph drawing set the
desired distances to be the shortest-path distances in the graph, which often
spread nodes well over the drawing and display symmetries and clusterings.
While classical scaling was used for graph drawing [5]and made scalable to
large graphs only recently [4l6], the distance scaling approach is pioneered much
earlier [16]. Kamada and Kawai [I5] used a layout energy equivalent to the
objective function introduced independently by McGee [I9] more than twenty
years earlier (there termed work). In the framework of the more general weighted
MDS, it corresponds to setting w;; = d;jQ in Eq. (@) Other weighting schemes
and dissimilarities are discussed in [5lf7]. Fig. 0l shows some example drawings.
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3 Hypotheses

A combination of theoretical properties, previous experience, popular beliefs,
and preliminary tests, led us to formulate and test the hypotheses below. These
shall not be read as if they were results, but serve to focus attention and are
formulated in such a way that they can be tested with algorithmic experiments.
We therefore conducted a series of experiments described in the next section.
See Section [f] for a discussion of the results.

The first hypothesis basically rules out force-directed methods.

Hypothesis 1. For graph drawing representing graph-theoretic distances it is
most appropriate to model this representation explicitly in the objective function.

Given their objectives, both classical and distance scaling should represent
graph-theoretic distances well in a geometric layout, and thus be useful for graph
drawing. Because of the more direct influence on the objective function and a
concave weighting of distance representation errors, it seems plausible that dis-
tance scaling would be the more suitable variant for graph drawing. While it is
almost commonplace that classical scaling is better at representing global struc-
ture whereas distance scaling is better at representing fine details [5], we do not
know of any systematic evaluation. We therefore provide experimental evidence
for the following.

Hypothesis 2. Distance scaling compares favorably with classical scaling in
terms of layout quality, because local details are represented better.

In our experience, based on many conversations with implementors and users
of graph drawing systems, a main reservation against distance scaling is its as-
sumed non-scalability, due to a multiude of local minima and high computational
demand. The next two hypotheses focus on how to ensure that the layouts pro-
duced by implementations of distance scaling are actually those supporting HIl

Hypothesis 3. Distance scaling is susceptible to poor local minima, because it
1s highly dependent on the initial layout.

Hypothesis 4. Classical scaling provides excellent initial layouts for distance
scaling, because the better representation of large distances helps to avoid poor
local minima.

If HAl holds, we have complicated matters even more, because two demanding
problems have to be solved rather than one. The final two hypotheses therefore
regard the possibility of computing the initial and final layout efficiently.

Hypothesis 5. Classical scaling layouts of very large graphs can be approxi-
mated efficiently using PivotMDS.

Hypothesis 6. Distance scaling is practical even on very large graphs.
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Table 1. Test set of graphs used in Experiments 1-3. n, m, D denote the number of
nodes, the number of edges, and the diameter, respectively. The two rightmost columns
contain plots for distance distributions and the 10 largest eigenvalues of B.

[name [ n[ m[description [ D[{dij} [)\1 ,,,,, 10
finite element mesh describing adjacencies between faces . |

516 516| 729|in a triangulation 61 U
network of high-voltage power distribution in the United Imll |

1138bus |1138| 1458 States. 31| alllh.._ | ...
matrix derived from Quebec hydroelectric power sys- Imlll |

qh882 882| 2856|tem’s small signal model 31 .|||I |II|. Il-. .....
finite-difference model of shallow wave equations in At- ||||||||||L |

plat1919 |1919|15240|lantic/Indian Ocean 431 |
social network in the city of Esslingen in the 19th cen- ||| |

esslingen1|2075| 4769 |tury 15 allll... (T
circle in which each node is adjacent to its 3 left and - ||

swO 500| 1500|right neighbors 84 | | P
graph sw0, each edge rediretced randomly with proba- |||||| |

sw002 500| 1500|bility 0.02 27 ol ...
graph sw0, each edge rediretced randomly with proba- || |I

swol 500| 1500|bility 0.1 10| allll.___ | 1.

btree 1023| 1022|complete binary tree of height 10 18] cooeen .||I||||||||, |"....,,,

protl 3025| 3629|largest component of protein interaction network 27 l||||||||ln ,,,,,,,,,,,, ||I||Il|.,

4 Experimental Design

Data. The experiments were run on a set of test graphs described in Table [l
The graphs were selected large enough to allow for extrapolation of the results
to very large graphs, but also small enough to allow for, the exact computation
of stress as given by (B]) in a large number of experiments.

Note that the eigenvalues of the matrices B associated with each graph indi-
cate the intrinsic dimensionality of the original distances d;;. If, say, two dimen-
sions suffice to reconstruct all the d;;’s exactly, such that the strain criterion is
zero, then A\; > Ay > A3 = --- = )\, = 0, and inversely, few large and many
(near-) zero eigenvalues indicate the existence of a good low-dimensional layout.

Environment. We implemented all MDS algorithms and speed-up techniques
ourselves to avoid bias due to coding, system, or timing. The algorithms were
implemented in Java using Sun’s SDK 1.6.0 and the yFiles 2.5.0.1 graph library
(www.yworks.com). All experiments were run on a standard 1.4 GHz Compaq
NX 7000 notebook with 512 MB of RAM, using Windows XP Service Pack 2.

Implementation. A simple and convenient way of implementing classical scaling
is by constructing matrix B in ([2]) and computing its two extremal eigenvalues
A1, A2 and eigenvectors v1, vo by power iteration.

The problem of drawing graphs with fixed edge lengths is AN'P-hard in gen-
eral [9], and for distance scaling no analytic solution is known, so layouts have to
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be computed iteratively. In Kruskal’s original proposal [I7], stress is evaluated for
the current positions, and new positions are computed by gradient descent; this
is also done in [I5T920] with gradient terms specific to the weights w;;. These
approaches were superseded by majorization [I8], which generates a sequence of
layouts with decreasing stress and can handle arbitrary weights w;; > 0. In our
experiments we use a “local iteration” with node-by-node updates [12].

5 Experiments

The first experiments is to provides evidence for which method yields better lay-
outs in principle (disregarding efficiency, ease of implementation, reliability, etc.),
when graph-theoretic distances are to be represented by Euclidean distances. We
use the following shorthand notation for the involved approaches:

— random: node coordinates drawn uniformly at random from (0, 1),
— fm3: fast multipole multilevel method [13],

— grip: multilevel force-directed layout method [I1],

hde: high dimensional embedder [14] (50 pivots),

cmds classical scaling.

Experiment 1 (Layout approach). All test graphs are laid out with cmds,
distance scaling with unweighted and weighted stress, fm3, hde, and grip.

For convenience, most implementations of iterative layout algorithms start from
a random initial configuration. It is, however, widely known that smart initializa-
tion is preferable. We here compare different initialization strategies for distance
scaling and evaluate the resulting stress. Before the iteration all initial solutions
X are scaled such that 37, . ||z — 2| = 32, ; dij.

Experiment 2 (Distance scaling and initialization). All test graphs are
laid out using each of the following layout algorithms: random, fm3, hde, grip,
cmds, and then minimizing weighted stress using local iteration.

Classical scaling has running time at least quadratic in the number of nodes n
for constructing distance matrix D € R™*"™ and decomposing the derived matrix
B € R™* ™. Quick estimates for the eigenvectors vy, vy corresponding to A1, Ao
are obtained by using only parts of D by selecting a subset W C V of k < n
pivot or landmark nodes and taking only k - n rather than n? distances into
account. Once W is constructed, two approaches for this are considered:

— Pivot MDS [4] uses the singular value decomposition of a rectangular matrix:
Let Dy € R™* be the matrix of k columns of distances from nodes in W,
e.g. in k breadth-first searches. Then the right singular vectors uy, us of C' =
—%JnD,(f)J;c are estimates for the eigenvectors vi,vs of B = —éJnD(Q)Jn.

— Landmark MDS [22] places nodes in W by classical MDS. The each node in
V' \ W is placed based on its k distances to nodes in W.
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The k pivots should be well-scattered over the graph; intuitively, this is to
represent as much of the full distance information D as possible. Assuming that
W contains k — 1 selected nodes, our strategies to determine the k-th pivot are

— maxmin: argmax;cy\y minjew d;j, the node farthest from W
— random: with uniform probability, from W
— mixed: with maxmin, if & is even, with random otherwise;

combining them with the two estimation approaches above leads to six strategies.
Let X,Y € R™*2 be the estimate and the actual solution, each centered at
the origin. To find out how similar X is to Y we use the Procrustes statistic

R =1- (tr(XTYYTX)1/2)2 / (tr (XTX) -t (YTY)) (6)

minimized by the Procrustes rotation P € R?>*? (see [21] for its formula) which,
applied to each row in X, optimally dilates, scales, rotates, and reflects X to
fit Y. It can be shown that 0 < R? < 1; if R? = 0, X and Y can be perfectly
matched, if R? = 1, they cannot be matched by any P € R?*? at all.

Experiment 3 (Approximating classical scaling). For each test graph, clas-
sical scaling is approzimated using 6 strategies { maxmin, random, mixed} x {land-
mark, pivot}, and compared to the exact solutions using the Procrustes statistic.

Experiments 2] and [B] were repeated 25 times, and to control for biases due to
the internal representation of graphs and matrices, we used as many instances
of each graph, each with randomly permuted vertices and edges.

Distance scaling by stress minimization is mostly used for improving the repre-
sentation of local details; setting w;; = di_j2 assigns large weight to the represen-
tation of small distances and vice versa. Initializing distance scaling with cmds,
we hope that large distances are fitted well; the subsequent fitting of smaller
distances and local details is achieved by discarding the large distances from the
stress term to be minimized, which we dub sparse stress

stress(X) = Y wi(diy — [les — 2]°) (7)
{i.jres
where S C V x V is a set of node pairs involved in the iteration, with |S| €
O(n). In our experiments we use local neighborhoods obtained by terminating
the breadth-first searches after k£ neighbors have been found.

Experiment 4 (Sparse stress minimization). For each of the test graphs
the initial classical scaling configuration is subjected to sparse stress minimiza-
tion using only local neighborhoods.

We use another collection of larger graphs to examine the scalability of initial-
ization and sparse stress minimization. Unlike the test graphs used earlier, their
size prohibits methods using the full square matrices. The results are assessed
visually with respect to the information known a priori.

Experiment 5 (Very large graphs). Large graphs are laid out first using an
approzimation to classical scaling and then sparse stress minimization.
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Fig. 3. Upper row: The majorization process with different initializations random, fm3,
hde, grip, cmds after 0, 30, 60 iterations. Lower row: Number of iterations vs. stress. The
bars indicate the range of values, the dots the median value, in 25 runs.

6 Results

Layout Quality. To assess layout quality both visually and quantitatively, aligned
layouts and the distributions of layout distances are shown in Fig. 2] for each of
the possible distance values between pairs of vertices, i.e. for values ranging
from 1 to the diameter of the respective graph. The classical scaling layouts
were generated with random initial positions and used as initial configurations
for distance scaling. Initialization is further studied in Exp. 2

The drawings for graphs qh882, 1138bus seem to confirm HI] and H2} using
weights w;; = dif helps to display local structures hidden by classical scaling or
unweighted distance scaling. For regular structures 516, plat1919, sw0, distance
scaling does not improve the quality of local representation. In a few cases clas-
sical scaling represents the overall structure better, such as the known clustering
of esslingenl into two densely connected parts.

In general, HIl and H2 can be accepted at least for graphs for which graph-
theoretic distance is well representable in low dimensions. However, none of
the MDS variants seems to be capable of representing both smaller and larger
distances for small diameter graphs and other special types of graphs like btree.
In such cases the MDS objective functions for distance representations is not
always useful as an aesthetic criterion; see Section [1 for a discussion.

Initialization. For independence of graph size and distances we divide the stress
by ZZ Wi d?j, which allows for comparison between stress computations even
for different graphs. We have carried out the iterative majorization process 25
times for each graph (with permuted edge list) and for each of the five initial
placements.

The results of Exp. [ are displayed in Fig. Bl which shows stress values over
the majorization process for distance scaling, with weights w;; = d;jz For almost
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(a) 1138bus (b) esslingenl (c) btree

Fig. 4. Procrustes statistics measuring how well Pivot MDS (red) or Landmark MDS
(blue) estimate the exact solution of classical scaling. Plotted are the median values of
25 runs with different node permutations, for k € {3,...,120} pivots.

all graphs we have tested, basically the same ranking resulted, with random being
worst, followed by fm3, grip, hde. Initially, cmds solutions tend to have higher
values, but overtakes the other initializations after some iterations.

All experiments indicate that H3 is valid for all types of graphs. Since large
distances and thus global structures are represented well, classical scaling gives
excellent initial configurations for distance scaling.

The bandwidth of stress values we observed for cmds-initialized layouts was
almost always negligible, whereas stress values vary largely for all other meth-
ods in the 25 runs. Classical scaling gives reproducible initial configurations
throughout, which are also robust against permutation of the input. All these
observations support Hf] Interestingly, btree is the only graph for which classical
scaling resulted in some variation; we attribute this to the multiple occurrence
of equal eigenvalues of matrix B (see Table[I]).

Scalability. We computed estimates for the solution to classical scaling for all
graphs, again in 25 runs with random node permutations. In each run, three sets
of pivots were grown from k = 3 to 120 (following maxmin, random, and mixed)
and used for Pivot MDS and Landmark MDS. The plots for the median values
of three selected graphs are shown in Fig. [l

For regular graphs like sw0, 516, the pivoting strategy is not crucial. In all
other cases Pivot MDS is superior to Landmark MDS, regardless of the pivoting
strategy. For Pivot MDS, the maxmin strategy performs better than random and
slightly better than mixed. The corresponding plots seem to converge to zero
faster and more smoothly than those for Landmark MDS. Once again, graph
btree seems to be different from the others; estimating the full classical scaling
solution appears to be unstable, no matter what pivoting strategy is used. Our
observations indicate that HH is valid.

We have conducted further experiments considering scalability, but omit them
here due to space restrictions. One suite of experiments applies Pivot MDS to
graphs with millions of nodes; we have observed that even those huge graphs, for
which the full classical scaling is impractical, are laid out well with it, provided
that two dimensions suffice, and, conversely, that increasing the number of pivots
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(a) Pivot MDS (b) sparse stress minim. (c) original

Fig.5. Drawings for a large graph representing the street network in Germany
(4044 153 nodes, 9564 235 edges, diameter 1059)

does not improve layout quality if the graph is of higher intrinsic dimensionality;
see also Sect. [l

Another suite of experiments indicates that, technically, stress minimization
scales even to very large graphs, but that HA is valid only with the limitation
that an appropriate sparsification scheme must be available.

7 Conclusion

We have studied different graph-layout approaches that aim at representing
graph-theoretic distances by Euclidean distances. Our experiments suggest that
minimization of weighted stress, an objective function that models the desired
aesthetic properties explicitly, is to be preferred over force-directed placement.
The recommended method for weighted stress minimization is to initialize with a
fast approximation of classical scaling [4] and subsequent iterative improvement
using localized stress reduction [I2]. Both phases are easy to implement, but the
second can be time-consuming. Approximation via sparse stress makes the algo-
rithm scale to very large graphs, but further research on reliable sparsification
schemes is needed.

The distance-based approach yields poor results on certain classes of graphs,
which include small worlds and other graphs with many shortcuts or low diame-
ter, and scale-free graphs with highly skewed degree distributions, large 1-shells,
or other forms of structural imbalance. Some success has been obtained with
stress weighting schemes based on graph invariants, but good characterizations
of problematic graphs are missing and matching layout algorithms need to be
developed further.

Using a hypotheses-based experimental design, we hope to foster clarity and
reproducibility of our results, and to contribute to experimental evaluation of
graph drawing algorithms in general.
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